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3, N THE REALM OF SPACE  EXPLO- 
ration,  the  biggest  obstacle  to  widespread 
application of autonomy in flight  software is 
not  technical  feasibility;  it  is  doubt  about  its 
trustworthiness  as a replacement for human- 
in-the-loop  decision-making.  Autonomous 
control  systems  raise  difficult verification 
and validation issues.  V&V  techniques are 
needed that significantly  increase  confidence 
in these  decision-making  systems. 

The key to  acceptance of this  technology 
is  not  hit-or-miss  testing but thorough V&V 
methods that yield  guarantees. We've devel- 
oped such a method that applies  two  analytic- 
verification  approaches: design-time model 
checking  that  guarantees  that  specific  condi- 
tions  are never violated,  and  runtime  embed- 
ded  behavior  auditors to verify that the imple- 
mented  integrated system  respects  similar 
conditions.  Together, they make  verification 
activities  part of design and development, not 
just a back-end  step. 

The challenges of V&V 
Traditional  space  missions  without  auton- 

omy are already inherently risky. Charles Per- 
row identifies  two risk dimensions  for  high- 
risk technologies:  interactions and coupling.' 
Complex  interactions  are  those of unfamiliar 
or  unplanned or unexpected  sequences,  and 
are  either  invisible or not  immediately  com- 
prehensible. Tightly coupled  systems have 
more  time-dependent  processes  that  cannot 
be delayed  or  extended. His chart  (see  Figure 
I )  identifies space missions as having  both 
characteristics, thus placing  them in the  quad- 
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rant  depicting  the  riskiest  technologies. 
Flight-project  managers are therefore  un- 

derstandably  reluctant to risk  a  science 
mission  on unproven technologies.  Flight- 
qualification programs for new technology 
such as NASA's  New Millennium and X2000 
are  essential  to  overcome  this  initial  hurdle. 
However,  flight-project  managers also need 
to be convinced that any  technology  can be 
verified  and  validated in the  specific  context 
of  their  mission. This poses a special chal- 
lenge  to  autonomy  software,  because  tradi- 
tional  V&V  approaches  are  inadequate  for  it. 

Traditional  spacecraft  control  uses  se- 
quences:  deterministic,  time-stamped,  linear 
series of commands. Their roots go back  to 
electromechanical controls similar to those for 
washing  machines,  although today sequences 
are  implemented as software instructions. 
Sequences  are validated mainly through man- 
ual review by several engineering  teams  (for 
example,  thermal  and  power) to ensure  that 
the sequences achieve their goals without pos- 
ing  hazards to the spacecraft.  This type of  val- 
idation is possible  precisely  because  the  engi- 
neering  teams  need  to consider only one 
execution  path. Even minimal generalizations 
of straight-line sequencing are viewed  as  risky. 
One such example is conditional  sequencing, 
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where a sequence has top-level conditionals- 
for example, if the  spacecraft is out of  the 
planet's shadow, turn  the solar panels toward 
the  sun. 

In contrast,  autonomy  software  for  space- 
flight  compactly  encodes  at  least  millions, if 
not billions, of execution  paths.  Traditional 
approaches to the  V&V of sequences  cannot 
scale to this level. 

Also, autonomy software  is inherently con- 
current-that is, multiple  processes  achieve 
different  goals,  or  subgoals  execute in paral- 
lel. Concurrent-task  software is easier to pro- 
gram  than  traditional  sequences  because  the 
means of achieving each goal can be designed 
separately.  Because of the  closed-loop nature 
of autonomy, each goal being achieved repre- 
sents a separate  thread. However, unintended 
interactions  between  threads  can  lead to fail- 
ures.  These  failures  are very difficult to find 
and  debug through  testing.  More  thorough 
means of finding  concurrency  errors are 
required. 

Analytic Verification approaches can meet 
theV&V challenges of autonomous  software. 
They  can scale to  handle  the  complexity of 
autonomous  control, and can calculate wheth- 
er  the  concurrent-software  designs are correct 
and monitor their execution. 
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Linear  Complex 
Interactions 

Figure 1. The two dimensions of risk for high-risk technologies.’ With complex interactions ond tight coupling, space 
missions fall into the quadrant depicting the riskiest missions. 

Design-time  analytic- 
verification  approaches 

Unlike traditional testing, which samples 
a digital  system’s  behavior,  analytic verifi- 
cation (also called,formul verification) math- 
ematically  calculates the system’s behavior. 
Traditional  testing  is  limited  because  the 
number of tests required to achieve statistical 
confidence in the system’s reliability grows 
dramatically-both as a function  of  the  sys- 
tem’s  complexity  and  as a function  of  the 
desired  degree of confidence. The  Pentium 
floating-point bug illustrates this.  Under  rare 
circumstances,  the floating-point circuitry of 
the  early  Pentiums  produced  an  incorrect 
result. Extensive testing before the Pentium’s 
release  did not reveal these  circumstances. 

However, these  circumstances  could have 
been revealed through  analytic-verification 
algorithms. For this reason, after the Pentium 
floating-point  bug,  digital-hardware  devel- 
opers have invested heavily in formal-verifi- 
cation techniques  to  complement simulation 
and testing. Results  have been encouraging 
and  are regularly reported in arenas  such as 
the  International  Conference on Computer- 
Aided  Verification.2  Excellent  results  have 
also occurred in the verification of computer 
firmware  (for  example,  complicated hierar- 
chical  memory  protocols),  communication 
protocols, and operating-system  services. 

To date,  two main approaches to design- 
time  formal  verification  exist: computer- 
based theorem proving and model checking. 
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Computer-based  theorem  proving. This 
approach  can verify unbounded (that is, infi- 
nite state) systems. Theorem-provers  that  are 
often  used  in  software  verification  include 
PVS’ andACL2.4  Theorem-proving  has  two 
disadvantages.  First, i t  requires  an  expert’s 
sustained  effort  over a substantial  time per- 
iod.  Second,  it provides little  direct  informa- 
tion if the  system  is not correct.  The inabil- 
ity to  find a proof of correctness  is  usually 
interpreted as indicating that the expert needs 
to  explore a different approach, not that the 
proof  doesn’t  exist. 

Typically,  an  expert  will  interact  with a 
computer-based  theorem prover for several 
work-months to generate a mechanically ver- 
ified  proof of the  correctness of some  key 
design  or  subsystem of adigital  system.  The 
effort  usually  focuses  on  developing  an 
induction  hypothesis  that  guarantees  that if 
a system  starts in a state  obeying  the  cor- 
rectness  criteria,  each  transition  of the sys- 
tem to  the next state  will  guarantee  those cri- 
teria.  Carrying  out a successful  proof by 
induction requires the  expert  to  be  skilled  at 
finding invariants that are  always  true of the 
system  and that can  be  added  as  lemmas  to 
support  the  induction  hypothesis. 

Although computer-based theorem provers 
have become increasingly  powerful, perform- 
ing many  of the smaller proof steps automati- 
cally, the problem of finding suitable invari- 
ants has  prevented this approach’s automation. 
Research toward automated invariant genera- 
tion is  encouraging, but completely  general 
algorithms will  remain elusive. 

Model checking. This  approach is a mathe- 
matical  technique  for  verifying  and  debug- 
ging  concurrent  or  real-time  systems mod- 
eled  as  interacting  finite-state  machines. 
Given a model  and a property, a model 
checker  searches  for truces of the model that 
violate the property. Properties can be  invari- 
ants,  temporal  properties  (that  is,  defined 
through  modal  operators  such as eventu- 
a l ly ) ,  or in  the  case  of  real-time model 
checkers,  metric  time  constraints  defined 
through  linear  relations. A trace is an  inter- 
leaved sequence of states (or, dually, transi- 
tions)  of  the  finite-state  machines. If the 
checker  finds  no  traces  violating  the  prop- 
erty, and  the  algorithm  runs to completion, 
the property is verified. 

Model  checkers  differ  from  simulators in 
that they explore  all relevant traces. In other 
words,  they  explore all realizable  paths  through 
the graph  of  states  that can be  reached from the 
initial state and that  match the property being 
checked.  They  also  enable  checking  much 
richer concurrency properties than is typical 
of simulators. Some model checkers are sim- 
ilar to theorem provers  in  that  they manipulate 
symbolic  descriptions of the transition rela- 
tion.  However,  model checkers do not  perform 
induction  and  hence  cannot verify systems 
with unbounded state. On the other hand, they 
are completely automatic and thus more prac- 
tical for verification in a spiral development 
process than theorem provers. 

Design  verification  using 
model  checking 

Model  checkers  are  particularly  well- 
suited  to  exploring  the  relevant  execution 
paths of nondeterministic  systems with mul- 
tiple  processes  running  in  parallel.  This 
makes them well-adapted to verification and 
debugging of autonomy  software.  The  num- 
ber of possible interleavings of the executions 
of parallel processes has an upper bound pro- 
portional to the product of the number of  local 
states  traversed  in  the  execution of each 
process.  Anticipating all these  interleavings 
can  be difficult for a human  designer; model 
checking  can find subtle, pernicious interac- 
tions that violate correctness  conditions. 

For  example, an unexpected  interaction 
between a communication process, a weather- 
data process, and an information-bus process 
caused  the  Mars Pathfinder software to enter 
a quasi-deadlock. This resulted in Pathfinder 
resetting itself because of the  timeout of a 
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1 (a) 
re lease- locks(1ocks) ) ;  

Figure 2. Simplified extracts of the  executive code, converted  to  an Algol-like syntax: (a) the funcal l  -with-maintained-property construct; (b )  the 
maintain-properties-daemon. 

watchdog  timer,  and in the loss of several 
days’ worth of science. A subsequent  model- 
checking replication of the interaction of these 
three  processes  duplicated  this bug. 

In this  section,  however, we discuss the 
discovery  of  bugs during design  verification 
of autonomy  software,  before they occur  dur- 
ing a mission. As  an example,  we’ll  briefly 
describe  one such bug that our model checker 
found  in  the  executive  subsystem of the 
DS-1 Remote Agents 

The correctness  criteria given to a model 
checker  are  expressed  in a temporal  logic that 
includes  logical  predicates  on  states  and  tem- 
poral operators on traces. Temporal logics dif- 
fer in the specific temporal operators they pro- 
vide.  The temporal  logic LTL includes the 
temporal operators []P, meaning that the pred- 
icate P is always true of the  states in a trace, 
and o P ,  meaning that P is  eventually true of 
a state in a trace.  (This  logic is neither  strictly 
less nor more  powerful  than  the Tspec lan- 
guage described  below for  execution-time 
checking, but a significant area of overlap 
exists  between  what  properties  the  two  lan- 
guages can express.) 

In the executive  code  for  the DS- 1 Remote 
Agent,  the  model  checker  Spin6  found  an 
error  trace  that  violates an eventually  prop- 
erty.  Specifically, i t  found an error  trace 
where an executive-task  program  might 
abort  without  eventually  releasing  its  prop- 
erty locks.  This can cause a deadlock  where 
other  tasks  cannot  execute  because  the 
aborted  task  has  not  released  the  properties 
they  need. The  properties locked by a task 
are  typically  device  states required for  the 
task’s successful execution-for example, 
the  requirement  that  the  engine-gimbal  actu- 
ator be activated  when  the  rocket engine is 
firing.  The error  occurred  in  the  executive’s 
central  core,  which  provides  services  analo- 
gous  to  those of an operating system. 

Figure 2 contains  simplified  extracts of the 
executive code,  converted  to an Algol-like 
syntax. The funcall-with-maintained- 
property construct  (see  Figure 2a) defined 
in the executive  is  called with two  arguments: 
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props, the  properties to  be maintained 
during  execution of the task’s  body,  and 
c losure,  the  body  itself. funcall-with- 
maintained-property i n  turn uses  the 
unwind-protect construct to provide a 
wrapper  around  the  body’s  execution. This 
ensures  that if  an abort  occurs  during  the  exe- 
cution (for example, an error is signaled 
because a locked property is violated, and the 
error  is  unrecoverable),  the locks are  released 
before  the  task  exits. 

The maintain-properties-daemon 
(see  Figure  2b)  monitors  property  violations. 
It invokes  automatic  recovery if a property 
violation  occurs; if the recovery  does not suc- 
ceed,  an  abort occurs. If a task’s body exe- 
cutes without aborting,  the release-locks 
statement  also  executes  afterwards. However, 
this  statement is not  itself  protected. Thus, if 
an abort  occurs  during the execution of 
release-locks,funcall-with-main- 
tained-property exits-whether  or  not 
the  locks  have been released. The bold arrow 
in Figure  2a  and  the  bold code in Figure  2b 
indicate  the  interleaving of these  two pro- 
cesses  that  leads  to the error  trace. 

Over  the  course of several  days, a NASA 
Ames  design-verification  team  (Klaus Have- 
lund,  John  Penix, and Michael  Lowry)  using 
Spin  found five concurrency bugs, including 
the one  above. Four of these  bugs  were 
deemed  important by the  executive  team, 
which believes that traditional  testing would 
not have  found  these  errors. In addition,  the 
checker verified that  several  properties  were 
correct;  that  is, it found  no  error traces.’ 

Runtime verification 
In contrast  to  design-time  formal  verifica- 

tion,  runtime  formal  verification checks the 
implemented  system’s  behavior  during  exe- 
cution,  rather than a  model’s  properties at 
design time. This verification  is  formal in that 
it checks system  behavior  against a specifi- 
cation (a model) of valid behavior  using  run- 
time auditors (also called  oracles).  This 

approach  is an element of the  larger  field of 
specification-based  testing.x 

Runtime verification  has  different  bene- 
fits  and  limitations  than design-time model 
checking. On the  positive  side, it checks the 
implemented  system  rather than a  design 
model. So, it  can detect  implementation 
errors  and  check behavior  at a much  more 
detailed  level. On the  negative  side,  because 
runtime  verification checks behavior during 
system  execution, the checked  behavior is 
limited to  the relatively  few traces that get 
exhibited  during  scenario-based  system  test- 
ing and actual  operation. Thus, we view run- 
time  verification as a partner of design-time 
model checking, not  an  alternative  to  it. 

In current practice, a variety of people, 
including mission designers and system  engi- 
neers,  levy  requirements  on  software.  Such 
requirements  are  usually  expressed in natural 
language and are  therefore not directly  usable 
for  testing. To address that  problem,  we’ve 
developed  Tspec, a behavior-specification 
language  for  nonprogrammers.  Tspec uses a 
notation  that  spacecraft  system  engineers and 
software  designers  and  developers  find  more 
intuitive than linear  temporal  logic.  They  can 
express  behavioral  constraints  and  expecta- 
tions,  using  simple  Tspec  constructs.  Such 
specifications  are  then  compiled  into a con- 
ventional  programming  language and linked 
with a  small  class library  to  form behavior 
auditors.  When linked with the  operational 
software, these embedded  behavior  auditors 
perform  runtime  verification. 

Tspec constructs. Tspec  currently  offers five 
types of behavior specifications-inline tests, 
invariants,  state machines,  episodes, and re- 
source constraints-that a user  can  instanti- 
ate  to  specify  the  boundaries of acceptable 
behavior. In all  cases, if the  observed behav- 
ior  violates  the  specified  behavior,  the  viola- 
tion is  reported  in a system-specific  manner, 
typically  through  logging  and  alerting. With 
the  exception of inline  tests, which get  eval- 
uated  in the  direct flow of execution, the 
behavior  auditor  associated with each  speci- 
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/ / E l e c t r i c  power: renewable  resource, 1 5 0  wat ts .  
remource renewable power ( 1 5 0 ) ;  

//show  usage and f r ee ing  of power 
when (xsspagwr,  ON) copI)ume (power, 4 5 ) ;  
when (cameragwr, ON) cons- (power, 6 ) ;  

Figure 3. Examples of Tspec constructs: (a) an invariant; (b) a state machine; ( 0  an episode; (d l  a resource. 

fication gets  evaluated  indirectly as an 
observer of changes to specific variables 
(described  later in “Jnstrumenting  the  code”). 

An inline test-like a C  a s s e r t  macr- 
specifies  a boolean expression  that  should 
always  evaluate to true when the  control flow 
passes  through  during  execution. 

An invariant  specifies a logical  condition 
that  should  always  evaluate to true.  Unlike an 
inline  test, which is  evaluatedonly when con- 
trol flow passes through  it, an invariant’s  con- 
dition  is  evaluated  every  time any of its vari- 
ables  changes  value,  regardless  of which line 
of code  caused  the  value  change. The invari- 
ant in  Figure  3a specifies  a  camera safety 
requirement:  never  allow  the  lens  cover  to be 
open if the cone  angle between  the camera 
boresight and the  sun  vector  is  less  than 0.1 
radian. This example  is  simple enough that 
you might  consider  extending  the  construct 
to enforce  the invariant  rather  than  merely 
check it. However, stating an invariant  is  gen- 
erally much easier  than  enforcing  it. 
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A state  machine  specifies constraints on 
state-transition activity and is evaluated every 
time a specified  state  variable  changes  value. 
For example,  the  state  machine in Figure  3b 
specifies  requirements  on a traffic-light  con- 
troller  in  terms of legal transitions  (for  exam- 
ple,  red  to  green),  state  durations  (for exam- 
ple,  the  red-state  duration  must  be  between 
15 and 60 seconds), and the  expected  transi- 
tion  rate  (four to I O  transitions in any 300- 
second  interval). 

An episode  specifies a behavior  fragment 
having  a  beginning  event and  an ending 
event, with potentially  many  intermediate 
events,  where the events  are  expected to 
occur  in  the  specified  order. A  change in any 
of an episode’s event  variables  triggers  eval- 
uation.  The  episode  in  Figure  3c  specifies 
requirements  on  a  science  measurement 
activity in terms of expected  steps  (three 
update events  are  expected),  required  con- 
ditions (poweron must  remain  true during 
the  episode),  and  timing  constraints  (the 

episode should  take  at  least 90 seconds but 
not more than 150 seconds, and  at  least 60 
seconds  must  separate  the  end  of  one  episode 
from  the  beginning of the  next).  Episodes 
that  remain  unfinished at the  end of a test sce- 
nario  are reported  as  warnings. 

A resource  specifies  the  type  and  amount 
of  an available  resource  and the condition 
under  which  it  is  consumed. A violation  oc- 
curs if a resource limit  is  exceeded. Resources 
are  either depletable (for example, propellant) 
or renewnble (for  example, power  from a 
solar  panel). The resource in Figure 3d spec- 
ifies the  total  amount of electrical power ( I  SO 
watts)  and the two conditions under  which 
that  power  is consumed  (for  example, the 
camera draws  six  watts  when  it  is  powered 
on). With  additional when-consume state- 
ments  that  detail  the  amount of power  con- 
sumption  implied by specific  states,  the  asso- 
ciated  auditor will report if the  system’s 
aggregate  state  ever  implies  greater than 1 50 
watts of power consumption. 

Behavior auditors. Auditors  report  not  only 
the  occurrence of unexpected  events and con- 
ditions, but also  the  absence of expected 
events  and  conditions.  Discrete  events,  such 
as  the  updating of a state  variable  or  expira- 
tion of a timer, trigger the auditing. The kinds 
of behavior  violations that these  auditors 
detect  include  conditions such  as  value out 
of range,  illegal  state  transition,  out-of-order 
event,  resource  threshold  exceeded,  state per- 
sisted  too  long,  and  activity  started but never 
completed.  The  focus  on  discrete-event 
behavior  checks  aims  at  detecting  failures in 
decision-based  autonomous  control  systems. 
Continuous  control  systems  such as attitude 
control  normally  include  specialized  moni- 
tors  as  part of the spacecraft’s fault-protec- 
tion  design  that  abstract  behavior  into a few 
discrete states. 

The auditors  are not part of some  tempo- 
rary test  scaffold;  rather, they are  embedded 
in mission software.  This gives them access to 
potentially all software  state  variables;  there- 
fore  they  can  check  virtually  any  flight  rule, 
not just the subset that  might be checkable 
from a log of selected  variables and events. 
In addition,  continuous  checking  during  a 
mission  can  provide  early  warning  to  ground 
operations  when  something  unexpected  is 
happening-whether because of hardware or 
software  failure. This changes  the  concept of 
system  testing  from  “checking  the  log  files” 
to  embedded  real-time  behavior  monitoring, 
from  development  through  deployment.  This 
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approach truly implements a maxim of flight- 
software engineering: “Test what you fly and 
fly what you  test.” 

Instrumenting the code. Obviously,  the 
operational  software  must  be  instrumented 
so that the behavior-auditing code  can access 
the required variables. In  an  object-oriented 
design,  this  can  be  accomplished  unobtru- 
sively through  the  Observer  design  pattern.9 
This mechanism  provides a loose  coupling 
between  the  operational  code  and  auditor 
code, with no  change  in the operational  code 
as the auditor  code is inserted  or  removed. 

Currently,  Tspec  specifications  are  being 
compiled  into C++ for  embedding  in  soft- 
ware  for JPL‘s X-33 Avionics Flight  Exper- 
iment. In this experiment  the auditors will be 
checking  behavior  visible  in a telemetry 
stream.  Later,  in JPL‘s X2000 program, 
Tspec  specifications  will  be  embedded  in 
autonomous  control  loops. 
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ences with, design-time model checking  and 
runtime verification suggest several important 
changes in software-development practices. 

Although  the  design  verification of the 
executive  code of DS- 1 Remote Agent  took 
less than a week,  constructing  an  abstracted 
design in the  Promela  language  (used by the 
Spin model checker) from the Lisp code took 
about  one-and-a-half  work-months.  Achiev- 
ing a model that was sufficiently abstracted 
to  be  computationally  tractable  for verifica- 
tion by Spin  required  significant  effort  for 
two main reasons. First, model-checking lan- 
guages  today are impoverished  compared  to 
programming  or  specification  languages. 
Consequently, Lisp is  much  more  expressive 
than Promela,  and  straightforward  syntactic 
translations of Lisp  into  Promela  result  in 
code  blowup. So, the  translation  was  hand- 
tailored.  Second,  much of the  code was not 
relevant  to  the  correctness  conditions on 
which this exercise  focused.  Understanding 
the code sufficiently to know how to  prune 
away the irrelevant portions of the design and 
limit the degrees of freedom of the remaining 
code  without  eliminating  possible  error 
traces  was  difficult.  For  manual  modeling, 
understanding is a prerequisite  to  perform- 
ing  good  abstractions. 

To enable automated design verification  of 
autonomy software, researchers are pursuing 
automated  modeling.  We  believe  that  with  suf- 
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ficiently good facilities for abstraction, pro- 
gramming  languages  and  design-specifica- 
tion languages can  be used directly in model 
checking.  This will let developers use model 
checking directly as part of a debugging pack- 
age  for  autonomy-software  design.  Auto- 
mated  abstraction is a challenging  research 
goal being pursued by a number of collabo- 
rating research institutions, including NASA 
Ames. A  near-term  alternative  is to provide an 
abstraction  workbench, in which autonomy 
designers can annotate their code with direc- 
tives for various kinds of abstractions, which 
would be applied syntactically. 

Furthermore, we believe that the concept 
of “software  delivery”  should  include  not 
only the  operational  code, but also the asso- 
ciated  verifiable  behavior  specifications. 
When a developer receives the initial require- 
ments  for a software  subsystem,  he  or  she 
should  begin by expressing  those  require- 
ments as verifiable behavior  specifications. 
This has the very positive  effect of focusing 
attention  first on  what  the  behavior  should 
be  rather than on how to implement  it. 

Finally, test  engineers  should  inspect  the 
behavior  specifications.  Behavior  specifica- 
tions  are  significantly  shorter  and  easier  to 
understand  than  operational  code, so this 
type of inspection is  more  approachable than 
a formal  code  inspection.  Such  inspections 
help  ensure that developers  have  adequately 
specified  the  expected  behavior  and  thereby 
reduce  the  chance of undetected  errors. 
Developers  should  be  praised  when  their 
behavior  specifications  catch a bug,  because 
early  automated  detection  greatly  eases 
debugging. 
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